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This study investigates some technical issues related to the use of cohesive zone models 

(CZMs) in modeling fracture processes. These issues include: why cohesive laws of different 

shapes can produce similar fracture predictions; under what conditions CZM predictions 

have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis 

results; when the shape of cohesive laws becomes important in the fracture predictions; and 

why the opening profile along the cohesive zone length needs to be accurately predicted. 

 Two cohesive models were used in this study to address these technical issues. They are the 

linear softening cohesive model and the Dugdale perfectly plastic cohesive model.  Each 

cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive 

laws have the same cohesive work rate (CWR) which is defined by the area under the 

traction-separation curve. The effects of the maximum traction on the cohesive zone length 

and the critical remote applied stress are investigated for both models. For a CZM to predict 

a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs 

to be much smaller than the crack length, which reflects the small scale yielding condition 

requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the 

predicted critical remote applied stresses depend on the shape of cohesive models used and 

can significantly deviate from LEFM results. Furthermore, this study also reveals the 

importance of accurately predicting the cohesive zone profile in determining the critical 

remote applied load.  

Nomenclature 

 c = x -coordinate of the cohesive zone tip  

ds  = arc length element of   a J -integral contour,   

( , )B x   = an influence function relating the cohesive zone opening displacement at x to the traction at   

E  = Young‟s modulus 

G  = energy release rate 

J  = J -integral value  

J  = plastic energy component of J  value due to the effect of cohesive zone length  

  =   J -integral contour 

cK  = fracture toughness 

chl  = characteristic length  

chl  = reference characteristic length  

1n  =   direction cosine between the outward normal of   and the x -axis 

iT  =   thi  component of the traction perpendicular to  in the outward direction 

iu   =   thi component of the displacement  

W  =   strain energy per unit volume 

( )x  = cohesive zone opening displacement at x  

c  =   maximum separation 

c  = cohesive work rate (CWR) that is the area under a cohesive law curve 

                                                           
1
Aerospace Engineer, NASA Langley Research Center, Mail Stop 188E, and AIAA Associate Fellow. 



 

American Institute of Aeronautics and Astronautics 
 

 

2 

  = cohesive zone length  

  =  cohesive traction 

c  = maximum cohesive traction 

c  = reference cohesive traction 


 = remote applied stress  

c
 = critical remote applied stress at the initiation of crack growth 

I. Introduction 

HE origin of cohesive zone models (CZMs) can be traced back to the “Dugdale-Barenblatt model” [1, 2]. The 

cohesive zone is considered to be a fracture process zone ahead of the crack tip as illustrated in Fig. 1 for an 

infinite plate with a crack. For most cohesive laws, the traction-separation curves, as shown in Fig. 2, used to model 

the material behavior within the cohesive zone are phenomenological, and hence, may not be directly related to the 

physical processes in the damage zone that typically are difficult to determine experimentally. Regardless, the CZM 

approach has been widely accepted as a computationally convenient fracture analysis tool. If the CZM approach is 

used in a finite element analysis, the crack initiation, growth and direction of the growth can be determined without 

the involvement of the analyst by properly embedding cohesive elements within the finite element model.  Many 

different cohesive laws with variances in maximum traction, maximum separation, and shape have been proposed, 

such as the linear softening cohesive law by Camacho and Ortiz [3], the exponential cohesive law by Needleman 

[4,5] and Xu and Needleman [6], the trapezoidal cohesive law by Tvergaard and Huchinson [7], and the polynomial 

cohesive law by Tvergaard [8]. Researchers found these cohesive laws generally produce results that correlated well 

with experimental data, such as failure load and crack growth.  

Although the aforementioned references use cohesive laws with different shapes, they lack justifications for 

choosing one shape instead of another. Recently, Chandra et al. [9] and Shet et al. [10] found that the shape of the 

CZM could affect the fracture predictions for a range of material systems. They stated that the shape of the CZM 

represents the net effect of the failure process and depends on the material systems. For linear elastic materials, the 

CZM predictions are expected to be comparable to linear elastic fracture mechanics (LEFM) results [11,12, 13]; 

however, the conditions, under which the cohesive zone modeling approach and the fracture mechanics approach 

can have a high degree of agreement, need to be more systematically investigated. Here, a high degree of agreement 

means that the two modeling approaches can predict near the same crack growth initiation load for a cracked 

structure.  

The objectives of this paper are to investigate: why cohesive laws of different shapes can produce similar 

fracture predictions; under what conditions CZM predictions have a high degree of agreement with LEFM analysis 

results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile 

along the cohesive zone length needs to be accurately predicted.  In Section II, the linear softening cohesive model 

(Linear Softening Model) and the Dugdale perfectly plastic cohesive model (Dugdale Model) used in this study are 

presented. Each model consists of five different cohesive laws (parameterizations of maximum tractions and 

maximum separations). In Section III, the relationship between the cohesive work rate (CWR), which is the area 

under the traction-separation curve of a cohesive law, and the J-integral value [11] of the cohesive zone is discussed. 

In Section IV, integral equations are formulated for using the Linear Softening Model and the Dugdale Model to 

analyze the fracture of an infinite plate with a crack under a remote tensile load, and the equations are solved with an 

iterative numerical procedure. This iterative procedure is implemented as a MATLAB
®
 M-file [14] for solving these 

equations to obtain the length of the cohesive zone ahead of the original crack, the opening displacement profile 

along the cohesive zone length, and the critical remote applied stress corresponding to the initiation of crack growth. 

In Section V, the analysis results of Section IV are presented and discussed. The effect of varying the maximum 

traction of a cohesive law on the predicted cohesive zone length and the critical remote applied stress is investigated. 

The results from the Linear Softening Model and the Dugdale Model are plotted as a function of the ratio of 

cohesive zone length to crack length, and these plots are used to address why cohesive laws of different shapes can 

produce similar fracture predictions and when the shape of the cohesive zone shape matters in determining the 

critical remote applied stress. The critical remote applied stress is then used in an LEFM formula to determine the 

energy release rate. If the energy release rate thus obtained is close to the cohesive work rate (CWR), then the failure 

load predicted by the CZM for a cracked structure will have a high degree of agreement with that obtained by the 

LEFM approach. In Section VI, concluding remarks are given to summarize the findings of this study.  
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II. Cohesive Zone Models 

The cohesive zone modeling approach is used to study the fracture of an infinite plate with a crack length of 2a 

subjected to a remote applied tensile stress 
 as shown in Fig. 1a. The cohesive zone length (CZL)-the process 

zone length-is given by  and the total length c equals a  . Note that all results presented in this paper involve 

Mode I fracture, and the material surrounding the cohesive zone is assumed to be in its linear elastic stage. This may 

be the simplest case that can be easily solved to provide analytical results needed for investigating the technical 

issues raised in the previous section. Other boundary value problems (different in geometries or loadings) may yield 

different quantitative results, but the qualitative trends will be the same. In the cohesive zones (narrow shaded bands 

shown in Fig. 1) ahead of the material crack tips, the prospective fracture surfaces are assumed to be restrained by a 

cohesive stress that Dugdale took to be the yield stress of the material [2]. Note the material crack tip shown in Fig. 

1b is the initial crack tip that is located at a and the cohesive zone tip, where the separation equals zero, is located at 

c. The traction (cohesive stress), , and the separation,
2 2u u    , of the cohesive surfaces are shown in Fig. 1b, 

where 
2u  and 

2u  are the opening displacements in the y-direction for the upper and lower cohesive surfaces, 

respectively. In cohesive zone modeling, a traction-separation curve is used to relate the traction, , to the 

separation,  , at any location along the x -axis for describing the constitutive behavior of the cohesive zone. The 

linear softening cohesive law shown in Fig. 2a can be expressed as 

( ) / 0

0

c c c c

c

      

 

   

 
                                                          (1) 

where 
c is the maximum traction and 

c  is the maximum separation. The CWR,
c , which is the work of 

separation per unit area, is the area under the linear softening curve given by 

1

2
c c c                                                                              (2) 

The Dugdale perfectly plastic cohesive law as shown in Fig. 2b has the same maximum traction and CWR as the 

linear softening cohesive law and is given by 

0 / 2

0 / 2

c c

c

   

 

  

 
                                                               (3) 

The sequence of events leading to crack propagation is depicted in Fig. 3 [7]. In Fig. 3a, an initial crack is shown 

in an unloaded state. Under increased loading, the cohesive zone is fully developed (Fig. 3b) when the maximum 

cohesive zone opening at the material crack tip (see Fig. 1b), ( )a , equals the maximum separation, c .  Further 

loading will create new crack surfaces, and both the material crack tip and the cohesive zone tip will advance. The 

length a in Fig. 3c represents the extension due to crack growth.  During the crack growth, the length of the 

cohesive zone and the opening displacement profile along the length of the cohesive zone are assumed to be 

unchanged.   

The results from the Linear Softening Model and the Dugdale Model are used for investigating some technical 

issues related to cohesive zone modeling of fracture. These issues include: why cohesive laws of different shapes 

can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement 

with LEFM analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and 

why the opening profile along the cohesive zone length needs to be accurately predicted.  Five linear softening 

cohesive laws (Cohesive Laws A to E in solid lines) and five Dugdale perfectly plastic cohesive laws (Cohesive 

Laws A to E in dashed lines) used in this study are shown in Fig. 4. These cohesive laws have different 

parameterizations of maximum tractions and maximum separations, but all have the same CWR. The maximum 

tractions for Cohesive Laws A to E of the Linear Softening Model are / 2c ,  
c , 2 c , 2 c , and 4 c , 

respectively, and their corresponding  maximum separations are 2 c ,  c , / 2c , / 2c , and / 4c , respectively.  

Note that c is a reference traction and 
c is a reference separation.  The maximum tractions for Cohesive Laws A 

to E of the Dugdale Model are / 2c ,  c , 2 c , 2 c , and 4 c , respectively, and their corresponding  maximum 

separations are c ,  / 2c , / (2 2)c , / 4c , and / 8c , respectively. These cohesive laws are used for computing 

the fully developed cohesive zone length and the critical remote applied stress for the infinite plate with a crack as 

shown in Fig. 1a. 
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III. CWR and J-integral Value 

The J-integral, taken along the boundary of a cohesive zone, the contour  , is expressed as [11], 

1( )i

i

u
J Wn T ds

x



 

                                                                 (4) 

where W is the strain energy per unit volume, 
1n  is the direction cosine between the positive side (outward) normal 

of   and the x -axis, 
iT  is the thi  component of the traction perpendicular to  in the outward direction, 

iu is the 

thi component of the displacement, ds is an arc length element along  .  

For contour   surrounding a fully developed cohesive zone as shown in Fig. 5, 
1 1 0n T  and the J -integral 

value becomes [11, 15] 

2 2

0

c

a a

c

a a

c

u u
J dx dx

x x x

d

 




 

 

     
     

   

  

 



                                             (5) 

where 
cJ is the critical J  value immediately before the initiation of crack growth. Note that Eq. 5 is valid with the 

assumption of a zero stress intensity factor at the cohesive zone tip [1,2,16-18]. Without this assumption, the 

cohesive zone length cannot be uniquely determined. 
cJ  equals the CWR,

c . Since the J -integral is a path 

independent integral, the J value obtained from any contour integral around the cohesive zone such as 
1 in Fig. 5 

must also equal to 
cJ . 

Cohesive zone models of various shapes, maximum tractions, maximum separations, and CWRs can be used to 

model the fracture processes of both brittle and ductile materials. If the cohesive zone model is used for brittle 

materials, it must produce results similar to those obtained from LEFM. The stress field outside of the cohesive zone 

must be the same as the K-dominant stress field [12, 19] in the LEFM model. Similar to the small-scale yielding 

requirement for an LEFM approach to be valid, the cohesive zone length must be much less than the crack length in 

order for the CZM approach to produce a fracture prediction comparable to LEFM analysis. The small-scale 

cohesive zone is required for maintaining the K-dominant stress field [12].  For small-scale cohesive zone cases, 

cJ is approximately equal to the critical energy release rate,
cG , as defined in LEFM.  This is the reason why many 

cohesive laws assume that the CWR equals the critical energy release rate often used for fracture analyses of brittle 

materials including polymeric composites [20-23], i.e. 

 
2

c

c c c

a
J G

E

 
                                                                (6) 

where c
is the critical remote applied stress required for initiating a crack growth, and a is the crack length as 

defined in Fig. 1a.  

Analyses using cohesive laws having the same CWR but different shapes will result in the same
cJ . If

cJ is the 

only parameter to determine fracture, then the shape of cohesive laws is not important in the fracture predictions. 

This is the reason why CZMs with different shapes can generate similar failure predictions for brittle fracture. 

If a CZM is used for modeling the fracture of ductile materials, it is necessary to use a cohesive law that can 

produce a long cohesive zone length to represent the behavior of large scale yielding in these materials. The
cJ  , 

computed along contour 
1 in Fig. 5 at a critical remote applied stress (

), may include both elastic and plastic 

components similar to the relationship shown in Eq. 3.29 of Reference 24. For such a cohesive zone model, cJ may 

be expressed as 

 
2

2

( ) ( )

( ) ( )

c

c

c

c

aK
J J J

E a E a

G J
a

  








     

  

                     (7) 
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where
cK is a fracture toughness term, 

 
2

( )

c

c
a

G
E

 




   is the elastic component, and J is the plastic component 

which is assumed to be a function of the scale of the cohesive zone. Here, c
is the critical remote applied stress.  

Note that unlike LEFM, there is no simple relationship between
cJ , the critical remote applied stress, the cohesive 

zone length and the crack length.  For a fully developed cohesive zone, 
cJ equals 

c , and Eq. 7 can be rewritten as 

 
2

( ) ( )

( )

c

c c

c

J G J
a

a
J

E a




  





    

  

                                                                  (8) 

For clarity, Eq. (8) can be expressed as  

( )
( )

1
c c

J
G a






 
 

                                                                     (9) 

 

The second term of this equation includes the effect of the scale of cohesive zone, / a . The validity of Eq. (9) will 

become clear after examining the CZM results in Section V. For nearly brittle fracture, / 1a   and ( ) cG    ,  

thus ( ) 0J
a


  . The closer / a  is to zero, the closer CZM predictions approach those of LEFM. 

IV. Analytical Procedures  

The cohesive zone is treated as an extended part of the crack with its fully developed length determined by the 

requirement that the stress intensity factor vanishes at the tip of the cohesive zone [1,2,16-18]. Additional 

information on the requirement of a zero stress intensity factor at the cohesive zone tip can be found in Reference 1. 

For the infinite plate with a crack shown in Fig. 1a, the following integral equation [18] can be used to determine the 

remote applied stress, 
for a given cohesive zone length, c a .  

 
2 2

2
0

1 /

c

a

d
c

c c

  
 

 
  


                                                        (10) 

where c is the x -coordinate of the cohesive zone tip and ( )   is the traction at location   as shown in Fig. 1b. 

Note that the cohesive zone tip location c  is an unknown, so for any given cohesive zone length c a , there is a 

corresponding value of 
that can satisfy Eq. (10). The

being sought is the value that can induce an opening 

displacement ( ) ca   at the material crack tip a (see Figs. 1b and 3b). 

The cohesive zone opening displacement  at location x is [18] 

2

2

4 4
( ) 1 ( , ) ( )

c

a

c x
x B x d

EE c


    


                                                 (11) 

where E  is the Young‟s modulus, and ( , )B x  is an influence function given by [25] 

2 2 2 2

2 2 2 2

1 / 1 /
( , ) ln

1 / 1 /

x c c
B x

x c c






  


  
                                                     (12) 

For the Linear Softening Model shown in Fig. 2a, Eq. (11) can be expressed as  

 

2

2

( ( ))4 4
( ) 1 ( , )

c

c c

ca

c x
x B x d

E Ec

   
  

 



                                         (13) 

                                                    

and Eq. (10) can be expressed as 
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2 2 2 2

( )
2

( )
1 / 1 /

c c

c c

a a

d
d

c c c

 
  

 
  

   
 

                                                  (14) 

Substituting 
into Eq. (13), an integral equation is obtained for determining the cohesive zone length, c a   , 

and cohesive zone opening displacements, ( )x  

* 2 *
*

2 2 2 2

2

2 2 2

( ) 1 2 ( )
( , ) ( ) 1

2 1 /

2 1
1 ( , )

1 /

c c

c

c a a

c c

a a

E x x
B x d d

c cc c c

x d
B x d

c cc c

   
    

 


 




  



  


 

 

                           (15)  

where *( ) ( ) / cx x   .  Eq. (15) can be written as  

2 * 2
* *

2 22 2 2 2

2 1 2 ( ) 2 1
( ) ( / )( / ) ( , ) ( ) 1 1 ( , )

1 / 1 /

c c c c

ch

a a a a

x x d
x c a a l B x d d B x d

c c c cc cc c

  
       

  

 
      

   
     

(16) 

where 
chl  is a characteristic length [26] defined as,  

2

c

ch

c

E
l




                                                                                 (17) 

Note that the characteristic length 
chl  has been used as an estimate of the cohesive zone length for determining the 

finite element mesh size [22,27,28] for failure predictions. For the Dugdale Model shown in Fig. 2b, much simpler 

equations similar to Eqs. (14) to (16) can be obtained due to a constant traction along the cohesive zone length. 

Equation 16 can be solved with an iterative procedure [18] outlined in Fig. 6 to determine the cohesive zone 

length, c a   , for a fully developed cohesive zone and the cohesive zone opening displacements ( )x . Note that 

Eq. (16) only needs two dimensionless input parameters, /c a  and / cha l . To start the iterative procedure, an initial 

cohesive zone length is selected to provide an estimate of the integral interval, [ , ]a c , for the integrals in Eq. (16) to 

determine the cohesive zone opening displacements along the given cohesive zone length. If the predicted opening 

displacement at the material crack tip  a  is not equal to the maximum separation c , an updated cohesive zone 

length is obtained by adding a small increment  , and new cohesive zone opening displacements along the given 

cohesive zone length are determined by repeating the numerical solution of Eq. 16. This iterative procedure is 

continued until  a equals c , at this point the cohesive zone is fully developed as shown in Fig. 3b. The final 

value of c a  is the predicted cohesive zone length and the associated remote applied stress  is designated as the 

critical remote applied stress c
. The critical remote applied stress c

can be obtained with Eq. (14), by using the 

final set of cohesive zone opening displacements. The critical remote applied stress is used to compute the energy 

release rate using the LEFM formula given in Eq. 6. If the ratio of the computed energy release rate ( )cG 
to the 

CWR, c , is close to unity, then the prediction using the CZM approaches LEFM prediction of fracture.  

V. Analytical Results and Discussions 

Analytical results for cohesive laws of the Linear Softening Model and the Dugdale Model as shown in Fig. 4 

are presented in this section. All cohesive laws have the same CWR, but different maximum tractions.  All the 

results are computed at the initiation of crack growth when the cohesive zone is fully developed. The effects of 

maximum traction on the cohesive zone length, the remote applied stress, and the degree of correspondence of the 

CZM approach and LEFM analyses are presented. The effect of maximum traction on the cohesive zone length can 

be found in Fig. 7, which shows that larger maximum tractions result in shorter cohesive zone lengths. The cohesive 

zone lengths are obtained for two different crack lengths, one has / 1cha l  and the other one has / 10cha l  , where 

chl  is a reference characteristic length defined as  
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2

c

ch

c

E
l




                                                                             (18) 

 Two solid line curves in the figure represent the Linear Softening Model results. The two solid line curves in Fig. 7 

merge into one for maximum tractions greater than 2 c . This indicates that the cohesive zone length does not 

depend on the crack length for a cohesive law with a large maximum traction. However, the cohesive zone lengths 

depend on crack length for models with a maximum traction less than 2 c . The cohesive zone length for the short 

crack / 1cha l   is longer than that of the long crack / 10cha l  . The two dashed line curves in Fig. 7  represent 

Dugdale Model results for crack length of / 1cha l  and / 10cha l  . In general, the cohesive zone length obtained 

with a Dugdale Model is less than the length obtained with its corresponding Linear Softening Model. These curves 

also show that the cohesive zone length does not depend on crack length for a cohesive law with a large maximum 

traction. A few following figures will use the data presented in this figure. 

Cohesive zone lengths are predicted for all cohesive laws in Fig. 4 for different crack lengths ranging from 

/ 0.25cha l   to  / 16cha l   and plotted in Fig. 8.  For clarity, only results of Cohesive Laws A, B, and D are plotted 

in Fig. 8. Cohesive Law A represents the most ductile material behavior, Cohesive Law D represents the most brittle 

material behavior, and Cohesive Law B represents an intermediate material behavior. Cohesive Laws A, B, and D 

have maximum tractions of / 2c , 
c , and 2 c , respectively.  It is apparent that each cohesive-zone-length curve 

for either the Linear Softening Model (solid line) or the Dugdale Model (dashed line) will reach a constant value as 

the crack length increases. For the cohesive law with the largest maximum traction, Cohesive Law D, the cohesive 

zone length reaches a constant value at a crack length around 2 cha l . For the second largest maximum traction, 

Cohesive Law B, the cohesive zone length reaches a constant value at a crack length around 5 cha l . The cohesive 

zone length almost reaches a constant value at 16 cha l for the smallest maximum traction, Cohesive Law A. The 

cohesive zone length curves (dashed lines) of the Dugdale Model are in general lower than the cohesive zone length 

curves (solid lines) of the Linear Softening Model if the crack length is not very short. 

The cohesive zone opening displacements along the cohesive zone length for cohesive laws with different 

maximum tractions are plotted in Fig. 9. For both the Linear Softening Model and the Dugdale Model, each model 

has three cohesive zone opening displacement curves plotted in the figure for three cohesive laws with maximum 

tractions of / 2c , 
c , and 2 c , respectively. These cohesive zone opening displacement curves along the cohesive 

zone length are not linear. The shapes of the cohesive zone opening profiles from both models are cusps. Barenblatt 

[1] found that the cusp shape is the only cohesive zone opening profile that can have a finite stress (a zero stress 

intensity factor) at the cohesive zone tip and the top and bottom cohesive surfaces smoothly closed. Barenblatt stated 

that, for the cusp shape opening profile, the energy released by a small extension at the cohesive zone tip must be 

zero. This statement was used to prove that the stress intensity factor needs to vanish at the cohesive zone tip. Figure 

9 also shows that smaller maximum tractions, representing ductile materials, result in a longer cohesive zone length. 

Note that the small difference in cohesive zone lengths for the Cohesive Law A of the Linear Softening Model and 

the Dugdale Model reveals that the cohesive zone length is not proportional to the maximum separation of the 

cohesive law used (see Cohesive Law A in Fig. 4 for both models).  For a crack length shorter than1 chl , the cohesive 

zone length of the Dugdale Model using Cohesive Law A is longer than the cohesive zone length of the Linear 

Softening Model as shown in Fig. 8. These opening displacements are used in Eq. (14) to compute the critical 

remote applied stresses. 

The computed remote applied stresses are normalized with the reference maximum traction, c , and the 

normalized remote applied stresses are plotted as a function of the maximum traction of the CZM models in Fig. 10. 

Again, the solid lines are the Linear Softening Model results, and the dashed lines are the Dugdale Model results. 

There are two curves for each model shown in Fig. 10 representing two different crack lengths. The bottom two 

curves for the longer crack length of / 10cha l  show that the remote applied stresses for both models reach the same 

constant value for the maximum tractions greater than c . The top two curves for the shorter crack length of 

1 cha l show that for the remote applied stresses to reach a constant value, the maximum traction needs to be greater 

than 4 c . The curve of the Linear Softening Model is lower that the Dugdale Model curve, but they are converging 

for cohesive laws with high maximum tractions. This indicates that the critical remote applied stress is independent 

of the shape of cohesive laws if their maximum tractions are high, representing brittle material behavior. The 
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normalized remote applied stresses are plotted as a function of the normalized cohesive zone length, / a , in Fig. 11 

for two different crack lengths, 
cha l  and / 10cha l  . For 

cha l , the dashed curve for the Dugdale Model is 

higher than the solid curve for the Linear Softening Model, but the two curves are converged for small scale 

cohesive zone lengths, / 1a  . This indicates that both models can produce a similar critical remote applied 

stress, independent of the shape of the cohesive law used, if the small-scale cohesive zone is valid.  For
cha l , both 

models predict that the normalized remote applied stress reduces as the cohesive zone length increases. 

For 10 cha l , both models predict near the same normalized remote applied stress results which decrease as the 

cohesive zone length increases.  Curves for different crack lengths converge to their corresponding LEFM solutions 

for / 0a   as shown in Fig. 11. This shows that when the scale of the cohesive zone is small, CZM prediction is 

similar to LEFM results, and the shape of cohesive law is not important.  

The computed remote applied stresses are then used in Eq. (6) to compute LEFM energy release rates ( )cG 
. 

The ratio of ( )cG 
to 

c is defined as the normalized LEFM energy release rate. If the normalized LEFM energy 

release rate approaches unity, then the cohesive zone model is considered to agree with an LEFM analysis (see Eq. 

9). Hence, both analysis approaches would predict similar critical remote applied stress. The normalized LEFM 

energy release rate as a function of maximum traction is plotted in Fig. 12. The figure shows that for a long crack 

length, / 10cha l  , the normalized LEFM energy release rate approaches unity for maximum tractions greater than 

2 c  while for a short crack length, cha l ,  the normalized LEFM energy release rate reaches unity at a much 

slower rate, and a cohesive law with a maximum traction greater than 4 c needs to be used.  Fig. 12 shows that the 

Dugdale Model results (dashed lines) approach unity faster than the Linear Softening Model results (solid lines) for 

both crack lengths. This is expected because for the same maximum traction, the cohesive zone length for the 

Dugdale Model is shorter than the Linear Softening Model as shown in Fig. 7.  The Dugdale Model represents more 

brittle material behavior.  The separation of the solid curve and the dashed curve for the same crack length indicates 

that the shape of the cohesive laws can affect the failure predictions, especially using cohesive laws with a low 

maximum traction.  

The normalized LEFM energy release rate requires high maximum tractions to reach unity for the shorter crack 

length, cha l . Rice [11] and Hutchinson [12] have stated that a CZM and LEFM can have a high degree of 

agreement only for materials that have small-scale cohesive zones, brittle materials. It is expected that a large-scale 

cohesive zone length, similar to a large-scale yielding zone, can significantly alter the original K dominant stress 

field around the original material crack tip [12,19]. Hence, the result from a CZM, producing a large cohesive zone 

length relative to the crack length, cannot agree with an LEFM analysis. Similar to the equation established in 

Reference 24 for computing the J value for an elastic-plastic material, the relationship between the normalized 

LEFM energy release rate and the scale of the cohesive zone length is proposed in Eq. 9. The normalized LEFM 

energy release rate as a function of the ratio of cohesive zone length to crack length, / a , is plotted in Fig. 13 for 

both crack lengths for validating Eq. 9. This plot reveals that the two curves shown in Fig. 12 for the Linear 

Softening Model can be collapsed to become a single curve as expected by Eq. 9. Similarly, the other curves in the 

same figure for the Dugdale Model can also be collapsed into a single curve. This indicates that the ratio of the 

cohesive zone length to the crack length is an important parameter for fracture predictions using a CZM. The ratio of 

cohesive zone length to crack length, / a , must be close to zero for the CZM to be close to an LEFM analysis. 

Physically, this means that regions ahead of the crack tip that exhibit mechanisms other than brittle fracture 

(plasticity, bridging fibers, etc) must be very small relative to the crack length for the CZM approach to be close to 

LEFM. 

Figure 13 shows that the normalized LEFM energy release rate curves from the Linear Softening Model and the 

Dugdale Model separate for large-scale cohesive zone lengths. This indicates that the fracture predictions depend on 

the shape of the cohesive laws used for large-scale cohesive zone length cases. Since both the Linear Softening 

Model and the Dugdale Model used have the same area, the CWR is thus not the only parameter determining failure 

for large-scale cohesive zone length cases. It is apparent that the shape of the cohesive law, the maximum traction or 

the maximum separation can affect the failure predictions. These observations imply that for large-scale cohesive 

zone length cases, the cohesive laws need to be determined experimentally. Methods and procedures for determining 

the bridging laws based on the J-integral approach can be used to obtain the cohesive laws [29,30].  
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For illustrating why the cohesive zone opening profile needs to be accurately predicted for determining the 

critical remote applied stress, the sensitivity of the computed critical remote applied stress relative to the variation of 

the opening profile is studied. In this study, the cusp shape cohesive-zone-opening profiles for the Linear Softening 

model as shown in Fig. 9 is replaced with a triangular shape cohesive-zone-opening profile as shown in the inset of 

Fig. 14. Note the separations at the material crack tip and the cohesive zone length are kept the same. Using the 

modified cohesive-zone-opening displacements from the triangular shape and Eq. (14), new remote applied stresses 

are computed. The changes of remote applied stresses relative to the original remote applied stresses are plotted in 

Fig. 14. The two curves, shown in Fig. 14, represent two different crack lengths, 
cha l  and / 10cha l  , 

respectively.  The changes of remote applied stresses are near constant about 9% for CZM models with maximum 

traction greater than 2 c  for both crack lengths. The implication of this study may explain why when using CZM in 

finite element analysis [28], the failure load predicted is sensitive to mesh size. A finite element model with a fine 

mesh along the cohesive zone length is needed to get a converged solution. The mesh sensitivity issue is due in part 

to the inaccurate prediction of the opening profile along the cohesive zone length when using a coarse mesh.  

VI. Concluding Remarks 

A few technical issues related to the cohesive zone modeling for fracture predictions of cracked structures were 

investigated in this paper. These issues include why cohesive laws of different shapes can produce similar fracture 

predictions; under what conditions CZM predictions have a high degree of agreement with LEFM analysis results; 

when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along 

the cohesive zone length needs to be accurately predicted. To investigate these technical issues, two cohesive 

models were used to analyze an infinite plate with a center crack. These models are the Linear Softening Model and 

the Dugdale Model. Each cohesive model consists of five cohesive laws with different maximum tractions and 

maximum separations. All cohesive laws have the same CWR, area under the traction-separation curve.  

MATLAB® M-files were implemented for numerically solving the CZM integral equations of the two models with 

an iterative procedure. 

The effects of maximum traction on the scale of the cohesive zone length and the predicted critical remote 

applied stress were presented for both cohesive models. This study found that using a cohesive law with high 

maximum traction results in short cohesive zone lengths. The conditions required for a CZM to predict the critical 

remote applied stress of a cracked structure compatible to that obtained by a linear elastic fracture mechanics 

(LEFM) analysis were investigated in this paper.  Similar to the small-scale yielding condition for an LEFM analysis 

to be valid, the cohesive zone length also needs to be about an order of magnitude less than the crack length for the 

CZM result to be close to the LEFM prediction. For small-scale cohesive zone lengths, the shape has negligible 

effect on the critical remote applied stress. These observations may be used to explain why many cohesive laws of 

different shape can produce similar fracture predictions.  For large-scale cohesive zone lengths, the predicted critical 

remote applied stress depends on the shape of the cohesive models and can significantly deviate from the LEFM 

result due to plasticity like behavior. Thus, the predicted fracture load depends on the shape of the cohesive laws as 

well as their maximum tractions and separations. Therefore, for large-scale cohesive zone length cases, the cohesive 

laws need to be determined experimentally. Furthermore, the importance of accurately predicting the cohesive zone 

opening profile was also investigated. Results show that a small variation in the profile can significantly affect the 

critical remote applied stress. This suggests that finite element analysis results using a CZM are sensitive to mesh 

size since a coarse mesh model cannot accurately represent the opening profile along the cohesive zone length. 
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Fig. 1 Fracture analysis of a cracked infinite plate using a cohesive zone model. 

 

 

Fig. 2 Linear softening and Dugdale cohesive models. 

 

 

 
 

 

 

 

 

 

 

a) Cohesive zone at crack tips

a
c

x

y







b) Cohesive traction     and cohesive
zone opening displacement 




( )x

a

2 ( )u x

2 ( )u x
x  c

x

( ) 

Material crack tip

Cohesive zone tip

a) Linear softening cohesive law





c

c




/ 2c

c

b) Dugdale perfectly-plastic cohesive law



 

American Institute of Aeronautics and Astronautics 
 

 

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cohesive zone fully developed at crack growth initiation and unchanged during growth [7]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 4 Five cohesive laws with different maximum tractions but the same cohesive work rate for both the 

Linear Softening and the Dugdale Models. 
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Fig. 5 J-integral paths around a cohesive zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 6  Iterative solution procedure (CZL:cohesive zone length). 
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Fig. 7 Cohesive zone length as a function of maximum traction for two different crack lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Cohesive zone length as a function of crack length for cohesive laws with different maximum tractions. 
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Fig. 9 Cohesive opening displacements along the cohesive zone length for cohesive laws with different 

maximum tractions ( 1 cha l ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Critical remote applied stress as a function of maximum traction for two different crack lengths. 
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Fig. 11 Normalized critical remote applied stress as a function of the normalized cohesive zone length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Normalized LEFM energy release rate as a function of normalized maximum traction. 
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Fig. 13 Normalized critical LEFM energy release rate as a function of normalized cohesive zone length. 

 

 

 

Fig. 14 Changes of remote applied stress due to modifying the cohesive zone opening profile from a cusp 

shape to a triangular shape.  
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